Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Mosq Control Assoc ; 39(4): 281-283, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38108425

ABSTRACT

Aedes scapularis has recently been detected for the first time in southwestern Florida. During the course of research and surveillance activities by local mosquito control districts in 2020 and 2021, a total of 190 adult females were collected from 14 separate locations in Collier and Lee Counties. To date, Ae. scapularis has been found in 5 counties since its rediscovery in Florida in 2006. Its detection and likely northward expansion into Collier and Lee Counties from the southern Florida Peninsula is in line with ecological niche model predictions that found the environment of the Gulf Coast of southwestern Florida to be highly suitable for the species. Due to its potential ability to transmit both exotic and endemic pathogens such as Everglades virus and Dirofilaria immitis, understanding the range and distribution of Ae. scapularis should be a priority for Florida mosquito control and public health agencies.


Subject(s)
Aedes , Alphavirus , Ochlerotatus , Female , Animals , Ecosystem , Mosquito Control
2.
J Med Entomol ; 60(5): 1038-1047, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37341187

ABSTRACT

The yellow fever mosquito, Aedes aegypti L., can transmit several pathogens responsible for human diseases. With insecticide resistance development becoming a concern, alternative control strategies are needed for Ae. aegypti. Sterile insect technique (SIT) is an increasingly popular option being explored. However, logistical issues in mass production and sterilization make it difficult to maintain a SIT program. Male mosquitoes are typically irradiated as pupae because this is the earliest developmental point at which females can be separated from males, but asynchrony in pupation and high variability in pupal responses to irradiation based on pupal age make it difficult to sterilize mass quantities of pupae on a regular schedule in a rearing facility. Young adult mosquitoes have wider windows for irradiation sterilization than pupae, which can allow facilities to have fixed schedules for irradiation. We produced a workflow for adult Ae. aegypti irradiation in a mosquito control district with an operational SIT program that currently irradiates pupae. The impacts of chilling, compaction, and radiation dose on survival were all assessed before combining them into a complete adult irradiation protocol. Males chilled up to 16 h prior to compaction and compacted to 100 males/cm3 during radiation resulted in low mortality. Males irradiated as adults had increased longevity and similar sterility compared to males irradiated as pupae. Additionally, males sterilized as adults were more sexually competitive than males sterilized as pupae. Thus, we have shown that irradiating adult males can be a viable option to increase the efficiency of this operational mosquito SIT program.


Subject(s)
Aedes , Infertility, Male , Female , Humans , Male , Animals , Pupa/radiation effects , Aedes/physiology , Reproduction , Mosquito Control/methods , Insecta , Sterilization
3.
Parasit Vectors ; 15(1): 402, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36320036

ABSTRACT

BACKGROUND: The sterile insect technique (SIT), which involves area-wide inundative releases of sterile insects to suppress the reproduction of a target species, has proven to be an effective pest control method. The technique demands the continuous release of sterilized insects in quantities that ensure a high sterile male:wild male ratio for the suppression of the wild population over succeeding generations. METHODS: For these releases, it is important to determine several ecological and biological population parameters, including the longevity of the released males in the field, the dispersal of the released males and the wild pest population size. The Lee County Mosquito Control District initiated a study in a 47-ha portion of Captiva Island (Florida, USA), an island with a total area of 230 ha, to define biological SIT parameters for Aedes aegypti (L.), an invasive disease-vectoring mosquito known to be difficult to control due to a combination of daytime biting activity, use of cryptic breeding habitats that are difficult to target with conventional night-time ultra-low volume methods, and emerging resistance to commonly used insecticides. Another goal was to assess patterns of dispersal and survival for laboratory-reared sterile Ae. aegypti males released over time in the pilot site. These parameters will be used to evaluate the efficacy of a SIT suppression program for Ae. aegypti on Captiva Island. RESULTS: Over the course of seven mark-release-recapture studies using single- and multiple-point releases, 190,504 sterile marked males were released, for which the recapture rate was 1.5% over a mean period of 12 days. The mean distance traveled by sterile males of the local strain of Ae. aegypti that has colonized Captiva Island was 201.7 m from the release point, with an observed maximum traveled distance of 404.5 m. The released sterile mosquitoes had a probability of daily survival of 0.67 and an average life expectancy of ~ 2.46 days. CONCLUSIONS: These data together with the population size estimate and sterile:wild ratio provide a solid basis for planning the SIT operational phase which is aimed at mosquito population suppression.


Subject(s)
Aedes , Infertility, Male , Humans , Animals , Male , Pilot Projects , Mosquito Control/methods , Population Density , Mosquito Vectors
4.
PLoS Negl Trop Dis ; 15(3): e0009063, 2021 03.
Article in English | MEDLINE | ID: mdl-33764975

ABSTRACT

Florida faces the challenge of repeated introduction and autochthonous transmission of arboviruses transmitted by Aedes aegypti and Aedes albopictus. Empirically-based predictive models of the spatial distribution of these species would aid surveillance and vector control efforts. To predict the occurrence and abundance of these species, we fit a mixed-effects zero-inflated negative binomial regression to a mosquito surveillance dataset with records from more than 200,000 trap days, representative of 53% of the land area and ranging from 2004 to 2018 in Florida. We found an asymmetrical competitive interaction between adult populations of Aedes aegypti and Aedes albopictus for the sampled sites. Wind speed was negatively associated with the occurrence and abundance of both vectors. Our model predictions show high accuracy (72.9% to 94.5%) in validation tests leaving out a random 10% subset of sites and data since 2017, suggesting a potential for predicting the distribution of the two Aedes vectors.


Subject(s)
Aedes/physiology , Animal Distribution , Models, Biological , Mosquito Vectors/physiology , Animals , Climate , Competitive Behavior , Ecosystem , Female , Florida , Male , Population Density , Species Specificity
5.
PLoS Negl Trop Dis ; 12(10): e0006544, 2018 10.
Article in English | MEDLINE | ID: mdl-30356237

ABSTRACT

Recent outbreaks of locally transmitted dengue and Zika viruses in Florida have placed more emphasis on integrated vector management plans for Aedes aegypti (L.) and Aedes albopictus Skuse. Adulticiding, primarily with pyrethroids, is often employed for the immediate control of potentially arbovirus-infected mosquitoes during outbreak situations. While pyrethroid resistance is common in Ae. aegypti worldwide and testing is recommended by CDC and WHO, resistance to this class of products has not been widely examined or quantified in Florida. To address this information gap, we performed the first study to quantify both pyrethroid resistance and genetic markers of pyrethroid resistance in Ae. aegypti and Ae. albopictus strains in Florida. Using direct topical application to measure intrinsic toxicity, we examined 21 Ae. aegypti strains from 9 counties and found permethrin resistance (resistance ratio (RR) = 6-61-fold) in all strains when compared to the susceptible ORL1952 control strain. Permethrin resistance in five strains of Ae. albopictus was very low (RR<1.6) even when collected from the same containers producing resistant Ae. aegypti. Characterization of two sodium channel kdr alleles associated with pyrethroid-resistance showed widespread distribution in 62 strains of Ae. aegypti. The 1534 phenylalanine to cysteine (F1534C) single nucleotide polymorphism SNP was fixed or nearly fixed in all strains regardless of RR. We observed much more variation in the 1016 valine to isoleucine (V1016I) allele and observed that an increasing frequency of the homozygous V1016I allele correlates strongly with increased RR (Pearson corr = 0.905). In agreement with previous studies, we observed a very low frequency of three kdr genotypes, IIFF, VIFF, and IIFC. In this study, we provide a statewide examination of pyrethroid resistance, and demonstrate that permethrin resistance and the genetic markers for resistance are widely present in FL Ae. aegypti. Resistance testing should be included in an effective management program.


Subject(s)
Aedes/drug effects , Aedes/genetics , Genetic Markers , Insecticide Resistance , Insecticides/pharmacology , Permethrin/pharmacology , Sodium Channels/genetics , Alleles , Animals , Biological Assay , Female , Florida , Genotype , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...